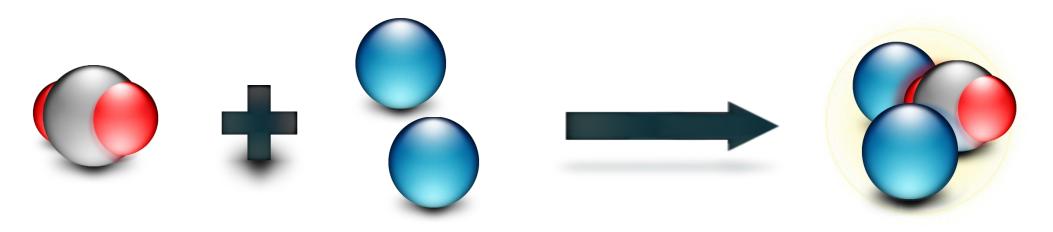
Turning CO₂ into Value



Pol Knops

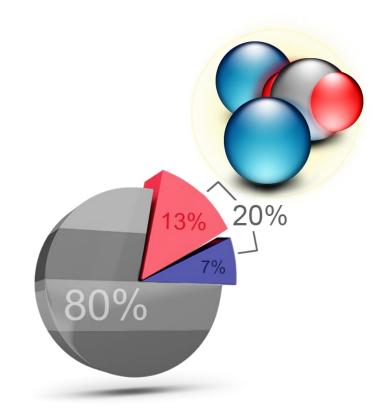
Trapping CO2

CO2

Green Minerals

Properties

Product:

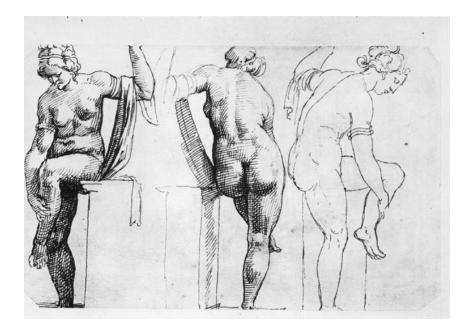

- $-\frac{1}{3}CO_{2}$
- Exothermic reaction
- Very small particles:
- $-\frac{2}{3}$ Magnesite
- -¹/₃ Amorphous Silica

Trapping CO2

Green Minerals

- Concrete
- Paper
- Polymer

- Benefits of concrete (durable, moldable)
- Higher packing density
- German Research program


- Replacement very fineley grounded lime
- 1st Prototype 3D printing
- Biobased polymers + CO2 based fillers

- Replacement "PCC"
- CO2 negative paper

In addition to "bio-based" also "CO2 based"

Business case

CO2

CO2

+€5

Olivine

 $3/_{3}$

- € 30 - € 40 + € 100

 $^{1}/_{3}$

²/₃

Energy

Green Minerals

Turning CO₂ into Value

Green Minerals